Dynamic Neural Diversification: Path to Computationally Sustainable Neural Networks
نویسندگان
چکیده
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks, where now excessively large models are used. However, such face several problems during the learning process, mainly due to redundancy individual neurons, which results in sub-optimal accuracy or need additional training steps. Here, we explore diversity neurons within hidden layer and analyze how affects predictions model. As following, introduce techniques dynamically reinforce between training. These decorrelation improve at early stages occasionally help overcome local minima faster. Additionally, describe novel weight initialization method obtain decorrelated, yet stochastic fast efficient network Decorrelated our case shows about 40% relative increase test first 5 epochs.
منابع مشابه
Dynamic Path Planning with Spiking Neural Networks
The path planning problem is relevant for all applications in which a mobil robot should autonomously navigate. Finding the shortest path in an environment that is only partialy known and changing is a difficult problem. Replaning the entire path when the robot encounters new obstacles is computational inefficient. Starting with an initial path and than modify the path locally does not guarante...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملUsing neural networks to predict road roughness
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...
متن کاملDynamic recurrent neural networks
We survey learning algorithms for recurrent neural networks with hidden units and attempt to put the various techniques into a common framework. We discuss fixpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non-fixpoint algorithms, namely backpropagation through time, Elman's history cutoff nets, and Jordan's output feedback architecture. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-86340-1_19